Implementasi K-Means Clushtering Dalam Mengelompokkan Minat Membaca Penduduk Menurut Wilayah
نویسندگان
چکیده
Membaca adalah salah satu kegiatan yang sangat bermanfaat dan membaca dapat menambah memperluas wawasan ilmu pengetahuan sudah kita miliki.Di era teknologi ini banyak sekali masyarakat tidak peduli lagi dengan karena beberapa faktor terutama rasa malas ada di dalam diri.Penelitian membahas tentang “Implementasi K-Means Clushtering Dalam Mengelompokkan Minat Penduduk Menurut Wilayah”.Data penelitian ambil dari sebuah website pemerintah yakni BPS(Badan Pusat Statistik) www.bps.go.id.Peneliti menggunakan algoritma mengelompokkannya menjadi -2 clushter atau kelompok yaitu tingkat tinggi(C1) rendah (C2).Terdapat -33 Provinsi Indonesia ini.Hasil terdapat -12 menduduki posisi tinggi -21 rendah.Diharapkan dilakukannya penelitiaan masukan informasi kepada setiap wilayah agar melakukan sosialisasi meningkatkan minat baca penduduk tiap pada rendah(C2).
منابع مشابه
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملK-means vs Mini Batch K-means: A comparison
Mini Batch K-means ([11]) has been proposed as an alternative to the K-means algorithm for clustering massive datasets. The advantage of this algorithm is to reduce the computational cost by not using all the dataset each iteration but a subsample of a fixed size. This strategy reduces the number of distance computations per iteration at the cost of lower cluster quality. The purpose of this pa...
متن کاملK+ Means : An Enhancement Over K-Means Clustering Algorithm
K-means (MacQueen, 1967) [1] is one of the simplest unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set to a predefined, say K number of clusters. Determination of K is a difficult job and it is not known that which value of K can partition the objects as per our intuition. To overcome this probl...
متن کاملk*-Means: A new generalized k-means clustering algorithm
This paper presents a generalized version of the conventional k-means clustering algorithm [Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, University of California Press, Berkeley, 1967, p. 281]. Not only is this new one applicable to ellipse-shaped data clusters without dead-unit problem, but also performs correct clustering without pre-assigning the exact...
متن کاملRK-Means Clustering: K-Means with Reliability
This paper presents an RK-means clustering algorithm which is developed for reliable data grouping by introducing a new reliability evaluation to the K-means clustering algorithm. The conventional K-means clustering algorithm has two shortfalls: 1) the clustering result will become unreliable if the assumed number of the clusters is incorrect; 2) during the update of a cluster center, all the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Just IT
سال: 2021
ISSN: ['2598-3016', '2089-0265']
DOI: https://doi.org/10.24853/justit.11.2.41-49